

(□) (@) (E) (E) E

590

Strict Logophors

Itai Bassi¹ Abigail Anne Bimpeh¹ Imke Driemel² Silvia Silleresi³

Sinn und Bedeutung 27

14/09/2022

Background	The puzzle of Strict Logophors	Proposal	Strict-unknown identity	Conclusion References

Outline

Background

2 The puzzle of Strict Logophors

3 Proposal

4 Strict-unknown identity

5 Conclusion

Bassi et al.	ZAS, HU
Strict Logophors	

ヘロト ヘロト ヘビト ヘビト

Background	The puzzle of Strict Logophors	Proposal	Strict-unknown identity	Conclusion	References
00000000	00000	000000000000000000000000000000000000000	0000	000000	

Background

Bassi et al.

Strict Logophors

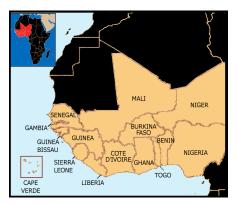
3

E 990

ZAS, HU Berlin, UMiB

▲日 → ▲圖 → ▲ 田 → ▲ 田 →

Logophoric Pronouns (LogPs)


Logophoric pronouns (LogPs) in some west-African languages occur in the context of an attitude predicate and must refer to the attitude holder.

(1)	Kofi $_1$ be $\mathbf{y}\mathbf{\hat{e}}_{1/*2}$ dzo.	Ewe
	Kofi say LogP left 'Kofi said that he left.'	(Clements, 1975)
(2)	Olú ₁ wí pé òun_{1/*2} wá. Olu say that LogP come	Yoruba
	'Olu said that he came.'	(Manfredi, 1987)
(3)	ϕ_1 sìrì nà $\mathbf{y}\mathbf{\acute{a}}_{1/*2}$ byàrà.	Igbo
	he said that LogP came 'He said that he came.'	(Hyman and Comrie, 1981)
		< ロ > < 母 > < 喜 > < 言 > こ 言 のへの
Bassi et al.		ZAS, HU Berlin, UMiB
Strict Logopl	nors	4

Profile of Ewe, Yoruba and Igbo

All 3 languages belong to the Niger-Congo language family:

- Ewe is spoken in Ghana (Volta & Oti regions) and Togo (southern).
- Yoruba speaking area spans mainly from Nigeria and Benin to smaller communities in Cote D'Ivoire, Serria Leone and the Gambia.
- Igbo is spoken in Nigeria and in some minor communities in Equitorial Guinea and Cameroon.

イロト イボト イヨト イヨト

ZAS, HU Berlin, UMiB

Background	The puzzle of Strict Logophors	Proposal	Strict-unknown identity	Conclusion	References
000000000	00000	000000000000000000000000000000000000000	0000	000000	

Context

 Part of the LeibnizDream project supported by the European Research Council (ERC)

Bassi et al.

Strict Logophors

ZAS, HU Berlin, UMiB

Background	The puzzle of Strict Logophors	Proposal	Strict-unknown identity	Conclusion References
000000000				

Question

Question

How is the dependency between LogP and the attitude holder encoded in the grammar?

= 990

ZAS, HU Berlin, UMiB

ヘロト ヘロト ヘビト ヘビト

Previous accounts (Heim 2002; von Stechow 2003; Pearson 2015)

- LogPs are bound variables bound from the edge of the embedded clause
- Binding is enforced by a syntactic feature [LOG]
- [LOG] requires that the pronoun be 'checked' in the syntax by a matching binder at the edge of the embedded clause
- If there is no matching binder, the derivation crashes at LF.

3

ZAS, HU Berlin, UMiB

Background	The puzzle of Strict Logophors	Proposal	Strict-unknown identity	Conclusion	References
0000000000	00000	000000000000000000000000000000000000000	0000	000000	

Pearson 2015

Syntax:

Kofi says that $[\lambda x_1 \lambda w$ Afi will marry $\underbrace{x_{1/*2,[LOG]}}_{}$]

LogP

Strict Logophors

Bassi et al.

ZAS, HU Berlin, UMiB

・ロト ・回ト ・ヨト ・ヨト

Background	The puzzle of Strict Logophors	Proposal	Strict-unknown identity	Conclusion References	5
000000000					

Pearson 2015

(5) *Syntax*:

Kofi says that $[\lambda x_1 \lambda w$ Afi will marry $\underbrace{x_{1/*2,[LOG]}}_{\text{LogP}}$]

- (6) [[(5)]] ≈ In all worlds in which what Kofi says is true, Afi marries the person Kofi identifies as himself in those worlds.
 (de se reading)
- (7) a. $\llbracket \text{say (that) } \mathsf{P} \rrbracket^w = \lambda x. \ \forall \langle w', x' \rangle \in \operatorname{SAY}_{x,w}, \llbracket \mathsf{P} \rrbracket(x')(w'),$
 - b. $SAY_{x,w} := \{ \langle w', x' \rangle : what x says in w is true in w' and x identifies themselves as x' in w' \}$

イロト イヨト イヨト

De se reference

- De se co-reference: The pronoun refers to who the attitude holder locates as themselves in the relevant worlds
 - Pearson (2015): Ewe LogPs also allow *de re* readings (=coreference unbeknownst to the att' holder)
 - Pearson's claim has been challenged recently (Bimpeh et al. 2022)
- We assume that LogPs only allow a *de se* reading.

Э

ZAS, HU Berlin, UMiB

Background	The puzzle of Strict Logophors	Proposal	Strict-unknown identity	Conclusion	References
000000000	00000	000000000000000000000000000000000000000	0000	000000	

The puzzle of Strict Logophors

Bassi et al.

Strict Logophors

12

= 990

ZAS, HU Berlin, UMiB

・ロト ・回ト ・ヨト ・ヨト

Problematic Prediction

- The stipulation that LOGP must be internally bound to the attitude holder implies that it should generally behave like a bound variable.
- This makes an incorrect prediction with respect to the strict/sloppy ambiguity in ellipsis- and association with only-contexts.

3

ZAS, HU Berlin, UMiB

Strict Logophors: Ewe data

 (8) Eli (le) mɔ-kpɔ-m be yè a de Abla. Yao hã. Eli be path-see-PROG COMP LogP will marry Abla. Yao too.
 'Eli hopes that he(=Eli) will marry Abla. Yao too hopes that ✓Eli_{strict}/ ✓Yao_{sloppy} marries Abla.'

ZAS, HU Berlin, UMiB

・ロト ・回ト ・ヨト ・ヨト

ellipsis

Bassi et al.

Strict Logophors

Strict Logophors: Ewe data

- (10) Eli (le) mo-kpo-m be yè a de Abla. Yao hã. Eli be path-see-PROG COMP LogP will marry Abla. Yao too.
 'Eli hopes that he(=Eli) will marry Abla. Yao too hopes that √Elistrict/ √Yaosloppy marries Abla.'
- (11) Eli ko yé súsú be **yè** dudzi le awu-dodo fe houvuli me. Eli only FOC think COMP **LogP** win (in dress-wear POSS contest inside). 'Only Eli thinks that he won (the costume contest).' only*Possible:* No x other than Eli thinks $\sqrt[]{Eli}_{strict} / \sqrt[]{x}_{sloppy}$ won.

< □ > < □ > < 三 > < 三 > < 三 > ○ < ○

ellipsis

Bassi et al. Strict Logophors

Strict Logophors: Ewe data

- (12) Eli (le) mɔ-kpɔ-m be yè a de Abla. Yao hã. Eli be path-see-PROG COMP LogP will marry Abla. Yao too.
 'Eli hopes that he(=Eli) will marry Abla. Yao too hopes that √Elistrict/ ✓Yaosloppy marries Abla.'
- ellipsis

・ロト ・回ト ・ヨト ・ヨト

- (13) Eli ko yé súsú be yè dudzi le awu-dodo fe hovivli me.
 Eli only FOC think COMP LogP win (in dress-wear POSS contest inside).
 'Only Eli thinks that he won (the costume contest).' *only Possible:* No x other than Eli thinks [√]Eli_{strict}/ [√]x_{sloppy} won.
- The data above are from original fieldwork with 3 speakers (see also Bimpeh and Sode 2021)
 In Yoruba and Igbo (2 speakers each) the picture is messier as far as we checked. There seems to be cross-speaker disagreements, but some of our speakers accepted strict logophors for certian attitude predicates. We hope to clarify the picture in future work.

Bassi et al

= nar

ZAS, HU Berlin, UMiB

LogP's Dilemma

► If:

- Ellipsis(/focus altenratives) must match in meaning with their antecedent, and
- LogPs must be bound at the edge of CP,
- Then: only bound-variable (=sloppy) reading is predicted
 - Strict readings are undergenerated
 - (14) Predicted antecedent clause(/prejacent): Eli hopes [λx_2 ... that $y \dot{e}_{2[log]}$ will marry Abla]
 - (15) Predicted ellipsis clause(/focus alternatives): Yao hopes [λx_2 ... that $y \hat{e}_{2[log]}$ will marry Abla], too.

ZAS, HU Berlin, UMiB

イロト 不同 トイヨト イヨト

Bassi et al.

Strict Logophors

= nar

LogP's Dilemma

(16) LogP's Dilemma:

If LogPs have to be syntactically bound, how are strict readings possible? If they don't, how to ensure LogP's obligatory (*de se*) coreference with the attitude holder?

Bassi et al.

Strict Logophors

3

ZAS, HU Berlin, UMiB

Background 7	The puzzle of Strict Logophors	Proposal	Strict-unknown identity	Conclusion	References
000000000 0	00000	•0000000000000000000000			

Proposal

Bassi et al.

Strict Logophors

≡ ∽ へ (~

ZAS, HU Berlin, UMiB

・ロト ・四ト ・ヨト ・ヨト

Background 000000000	The puzzle of Strict Logophors	Proposal 000000000000000000000000000000000000	Strict-unknown identity	Conclusion	References
In a nu	ıtshell				

▶ LOGP consists of two sytactic pieces: LOGP ≡ [LOG *pro*_i]

- ▲ ロ ト ▲ 国 ト ▲ 国 ト → 国 - うへぐ

ZAS, HU Berlin, UMiB

Bassi et al.

Strict Logophors

In a nutshell

- ▶ LogP consists of two sytactic pieces: $LOGP \equiv [LOG pro_i]$
- proi is a variable, but one that is not (necessarily) bound
 - \blacktriangleright Direct $\lambda\text{-binding}$ by the antecedent is not enforced at LF

I na ∩

ZAS, HU Berlin, UMiB

In a nutshell

- ▶ LOGP consists of two sytactic pieces: LOGP ≡ [LOG pro_i]
- proi is a variable, but one that is not (necessarily) bound
 - Direct λ -binding by the antecedent is not enforced at LF
- LOG is semantic feature resposible for the (*de se*) coreference requirement of LogPs. It encodes reference to the 'Logohoric Center'
 - See also Bimpeh et al. 2022

Э

ZAS, HU Berlin, UMiB

In a nutshell

- ▶ LOGP consists of two sytactic pieces: LOGP ≡ [LOG pro_i]
- proi is a variable, but one that is not (necessarily) bound
 - Direct λ -binding by the antecedent is not enforced at LF
- LOG is semantic feature resposible for the (*de se*) coreference requirement of LogPs. It encodes reference to the 'Logohoric Center'
 - See also Bimpeh et al. 2022
- Strict readings are possible because LOG's semantic contribution can be suspended when computing focus and ellipsis, similar to other pronominal features (see Sauerland 2013; Bassi 2021, a.o.)

ZAS, HU Berlin, UMiB

Road Map

Step 1: we present our proposal for the (*de se* coreference requirement of LogPs in basic sentences

Bassi et al.

Strict Logophors

= nar

ZAS, HU Berlin, UMiB

<ロト < 回 > < 三 > < 三 >

Road Map

- Step 1: we present our proposal for the (*de se* coreference requirement of LogPs in basic sentences
- Step 2: show how it helps explain strict readings in ellipsis and focus
 - given auxiliary assumptions re: pronominal features in ellipsis and focus

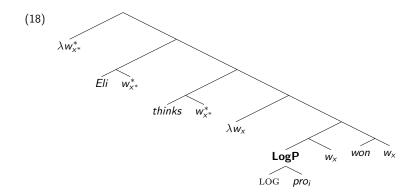
3

ZAS, HU Berlin, UMiB

Road Map

- Step 1: we present our proposal for the (*de se* coreference requirement of LogPs in basic sentences
- Step 2: show how it helps explain strict readings in ellipsis and focus
 - given auxiliary assumptions re: pronominal features in ellipsis and focus
- Step 3: present a novel and correct prediction of our analysis

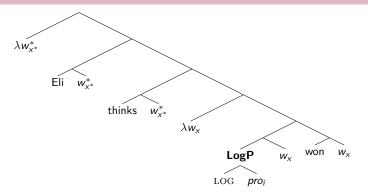
A new route to obligatory *de se* coreference


(17) Eli súsú be yè dudzi. Eli think COMP LogP win. 'Eli thinks that he won.'

ZAS, HU Berlin, UMiB

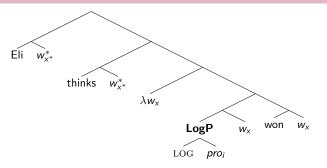
<ロト < 回 > < 三 > < 三 >

Bassi et al.


Strict Logophors

 $[(18)] \approx$ In each of Eli's belief worlds, Eli's 'self' (the 'Logophoric Center') won.

Bassi et al.	ZAS, HU Berlin, UMiB
Strict Logophors	21


◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 = のへで

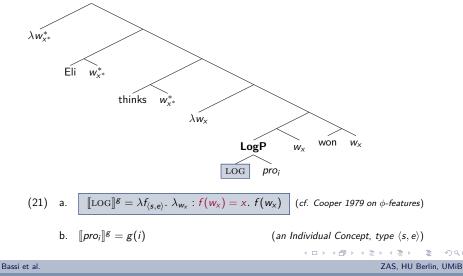
'Centered-worlds' (Lewis 1979 a.o.) represented in the LF (see also Sauerland 2018)
 Technically: variables over world-individual pairs (notated 'w_x'; by covention: type s) saturate argument slots in the denotation of verbal and nominal predicates

イロト イボト イヨト イヨト

Э

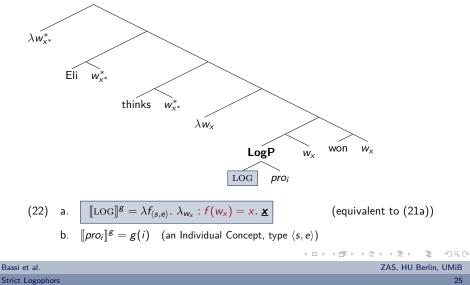
(19) $\llbracket \operatorname{think}_{w_{x^*}^*} \rrbracket^{g} = \lambda p_{\langle s,t \rangle} \lambda y : \forall w_x \in \operatorname{BEL}_y, \ w_x \in \operatorname{dom}(p).$ (cf. Heim 1992) $\cdot \forall w_x \in \operatorname{BEL}_y, \ p(w_x)$

(20) BEL_y := { w_x | w is compatible with y's beliefs and x is the *Center* of w—the individual in w who y perceives as y's 'self' in w}.

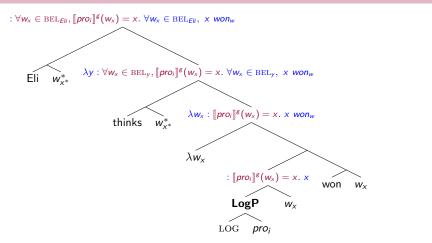

Bassi et al.

Strict Logophors

3


ZAS, HU Berlin, UMiB

<ロト < 回 > < 三 > < 三 >



Strict Logophors

590

A de se semantics for LogPs

Bassi et al.	ZAS, HU Berlin, UMiB
Strict Logophors	26

A *de se* semantics for LogPs

 $\llbracket (18) \rrbracket \approx \forall w_x \in \text{BEL}_{Eli}, x \text{ won}_w.$

In each of Eli's belief worlds, the person who Eli identifies as himself won.

Bassi et al.

Strict Logophors

= nar

ZAS, HU Berlin, UMiB

・ロト ・回ト ・ヨト ・ヨト

A free individual concept

- proi's value needs to be resolved using contextual cues, or accommodated otherwise
- But LOG will effectively restrict its possible values

Bassi et al.

nan

¹It might be more appropriate to restrict the possible concepts to those which return an individual that the attitude holder is acquainted with through that concept. To do that, we could adopt Percus and Sauerland 2003's Concept Generator (CG) theory and incorporate CGs into the LFs. See appendix.

A free individual concept

- proi's value needs to be resolved using contextual cues, or accommodated otherwise
- But LOG will effectively restrict its possible values ¹

(24) a.
$$\checkmark [[pro_i]]^g = \lambda w_x. x.$$
 (the *self*-concept)
b. $\checkmark [[pro_i]]^g = \lambda w_x.$ the person in *w* who *x* knows as 'Eli'
c. $\varkappa [[pro_i]]^g = \lambda w_x.$ the person in *w* who *x* knows as 'Ann'

¹It might be more appropriate to restrict the possible concepts to those which return an individual that the attitude holder is acquainted with through that concept. To do that, we could adopt Percus and Sauerland 2003's Concept Generator (CG) theory and incorporate CGs into the LFs. See appendix.

Bassi et al.

nar

ZAS, HU Berlin, UMiB

Intermediate Summary

- We offered a semantics that delivers *de se* coreference with the attitude holder
 - ▶ with the novelty that part of LogP is a presuppositional LOG feature
- How does this help us with strict readings?

3

ZAS, HU Berlin, UMiB

Background	The puzzle of Strict Logophors	Proposal	Strict-unknown identity	Conclusion	References
		000000000000000000000000000000000000000			

association with only

(25) Eli ko yé súsú be yè dudzi (le awu-dodo fe houiuli me). Eli only FOC think COMP LogP win (in dress-wear POSS contest inside).
'Only Eli thinks that he won (the costume contest).' Possible: No y other than Eli thinks ⁴ Eli_{strict} / ⁴ y_{sloppy} won.

ZAS, HU Berlin, UMiB

<□> <回> <回> < 回> < 回> < 回> < 回> < 回> < 0 < 0

Bassi et al.

Strict Logophors

association with only

- (26) Eli ko yé súsú be yè dudzi (le awu-dodo fe houiuli me). Eli only FOC think COMP LogP win (in dress-wear POSS contest inside).
 'Only Eli thinks that he won (the costume contest).' *Possible:* No y other than Eli thinks [√] Eli_{strict} / [√]y_{sloppy} won.
- If LOG imposes its presupposition across all alternatives, only sloppy reading is possible.
- ▶ But...

I na ∩

ZAS, HU Berlin, UMiB

イロト イヨト イヨト

Background	The puzzle of Strict Logophors	Proposal	Strict-unknown identity	Conclusion	References
000000000	00000	000000000000000000000000000000000000000	0000	000000	

- It has been argued that certain featural content on pronouns can be switched off when computing focus alternatives (Sauerland 2013; Bassi 2021 a.o.)
 - Strict readings of self anaphors (see also McKillen 2016; Bruening 2019)

ZAS, HU Berlin, UMiB

- It has been argued that certain featural content on pronouns can be switched off when computing focus alternatives (Sauerland 2013; Bassi 2021 a.o.)
 - Strict readings of self anaphors (see also McKillen 2016; Bruening 2019)
 - ϕ -features on bound pronouns
- ▶ We assume that LOG, being a kind of φ-feature, can be absent from alternatives in the same way

Background	The puzzle of Strict Logophors	Proposal	Strict-unknown identity	Conclusion	References
		000000000000000000000000000000000000000			

(27) a. <u>LF</u>: Only [$\mathsf{Eli}_{[\mathbf{F}]}$ thinks λw_x [[LOGP **[LOG pro**_i] $_{w_x}$] won $_{w_x}$]]

・ロト・西下・田下・田下・ 日・ うへの

ZAS, HU Berlin, UMiB

Bassi et al.

Strict Logophors

Background	The puzzle of Strict Logophors	Proposal	Strict-unknown identity	Conclusion	References
000000000		000000000000000000000000000000000000000			

- (29) a. <u>LF</u>: Only [$\mathsf{Eli}_{[\mathbf{F}]}$ thinks λw_x [[LOGP **[LOG pro**_i] $_{w_x}$] won $_{w_x}$]]
 - b. <u>Alt's</u>: { Kofi thinks λw_x [[LogP **[LOG pro**_i] $_{w_x}$] won $_{w_x}$], Koku thinks λw_x [[LogP **[LOG pro**_i] $_{w_x}$] won $_{w_x}$], ...}

・ロト ・回ト ・ヨト ・ヨト

Bassi et al.

Strict Logophors

E 990

Ba	ackground	The puzzle of Strict Logophors	Proposal	Strict-unknown identity	Conclusion	References
00	00000000	00000	000000000000000000000000000000000000000	0000	000000	

- (31) a. <u>LF</u>: Only $[\operatorname{Eli}_{[\mathbf{F}]} \operatorname{thinks} \lambda w_x [[_{\operatorname{LOGP}} [\operatorname{LOG} \operatorname{pro}_i]_{w_x}] \operatorname{won}_{w_x}]]$ b. <u>Alt's</u>: { Kofi thinks $\lambda w_x [[_{\operatorname{LOGP}} [\operatorname{tog} \operatorname{pro}_i]_{w_x}] \operatorname{won}_{w_x}], Koku thinks <math>\lambda w_x [[_{\operatorname{LOGP}} [\operatorname{tog} \operatorname{pro}_i]_{w_x}] \operatorname{won}_{w_x}], ... \}$
- At the level of the prejacent, LOGP must pick out Eli's 'self' in Eli's belief worlds;
 but LOG's presupposition can be absent from alternatives, clearing the path to a strict reading (*pro_i* can remain free)

= nar

ZAS, HU Berlin, UMiB

Background	The puzzle of Strict Logophors	Proposal	Strict-unknown identity	Conclusion	References
	00000	000000000000000000000000000000000000000	0000	000000	

(33) a. <u>LF</u>: Only [$\text{Eli}_{[\mathbf{F}]}$ thinks λw_x [[$_{\text{LOGP}}$ [LOG *proi*] $_{w_x}$] won $_{w_x}$]] b. <u>Alt's</u>: { Kofi thinks λw_x [[$_{\text{LOGP}}$ [**LOG** *proi*] $_{w_x}$] won $_{w_x}$] ,

Koku thinks λw_x [[LogP [LOG proi] $_{W_x}$] won $_{w_x}$], ...}

- ▶ At the level of the prejacent, LOGP must pick out Eli's 'self' in Eli's belief worlds;
- but LOG's presupposition can be absent from alternatives, clearing the path to a strict reading (*pro_i* can remain free)
- proi's value can be whatever concept the alternative attitude holders associate with Eli, e.g.:
 - (34) Possible value for *pro_i*:

 λw_x . the individual that x knows by the name "Eli";

イロト イボト イヨト イヨト

Bassi et al.

Background	The puzzle of Strict Logophors	Proposal	Strict-unknown identity	Conclusion	References
000000000	00000	000000000000000000000000000000000000000	0000	000000	

- The account of the ambiguity in ellipsis works the same
- Assuming the identity condition on ellipsis (Parallelism), too, ignores \u03c6-features (Ross 1967).

Ellipsis

(35) Eli (le) mo-kpo-m be yè a de Abla. Yao hã. Eli be path-see-PROG COMP LogP will marry Abla. Yao too.
'Eli hopes that he(=Eli) will marry Abla. Yao too hopes that √ Eli_{strict}/ √ Yao_{sloppy} marries Abla.'

イロト 不得 トイヨト イヨト

Bassi et al.

Strict Logophors

= nar

Background	The puzzle of Strict Logophors	Proposal	Strict-unknown identity	Conclusion	References
000000000	00000	0000000000000000000	0000	000000	

Sloppiness

The sloppy reading can be derived too

Only [$\mathsf{Eli}_{[\mathbf{F}]}$ thinks λw_x [$[_{\mathrm{LOGP}}$ [LOG *proj*] $_{w_x}$] won $_{w_x}$]]

- Either by λ -binding *pro_i* to the matrix subject
- or by fixing the 'self' concept as the value of pro_i, with or without interpreting LOG across the alternatives
- (or both)

= nar

ZAS, HU Berlin, UMiB

イロト イヨト イヨト

Background	The puzzle of Strict Logophors	Proposal	Strict-unknown identity	Conclusion	References
			•000		

Strict-unknown identity

Bassi et al.

Strict Logophors

≣ ઝ૧ભ erlin, UMiB 35

ZAS, HU Berlin, UMiB

・ロト ・回 ト ・ヨト ・ヨト

Background	The puzzle of Strict Logophors	Proposal	Strict-unknown identity	Conclusion	References
			0000		

New prediction

(36) Eli ko yé súsú be **yè** dudzi le awu-dodo fe hovivli me. Eli only FOC think COMP **LogP** win in dress-wear POSS contest inside.

'Only Eli thinks that he won the costume contest.'

Prediction:

The alternatives to Eli—though not Eli himself—can be mistaken or unaware of the exact reference of ${\rm LogP}$

Because the contextually-salient concept that proi stands for can refer to different individuals in the minds of different attitude holders.

(37) Possible values for *pro_i*:

 λw_x . the individual that x knows by the name "Eli"; λw_x . the individual that x knows as the guy who was wearing the red costume; ...

Bassi	et	al.
Strict	Lo	gonhor

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

ZAS, HU Berlin, UMiB

New prediction: Strict-unknown identity

(38) Context: There is a costume contest. Eli, a participant who was wearing a red costume, overhears the judges of the contest debating, and concludes from what he hears that he is going to be declared as the winner. Koku and Kofi, who watched the costume show, are wrong about the identity of the man with the red costume; they don't know it was Eli. They might even disagree among themselves who it was). But they don't think that he, whoever he is, will win.

Э

ZAS, HU Berlin, UMiB

New prediction: Strict-unknown identity

- (40) Context: There is a costume contest. Eli, a participant who was wearing a red costume, overhears the judges of the contest debating, and concludes from what he hears that he is going to be declared as the winner. Koku and Kofi, who watched the costume show, are wrong about the identity of the man with the red costume; they don't know it was Eli. They might even disagree among themselves who it was). But they don't think that he, whoever he is, will win.
- According to 3 Ewe speakers with whom we checked, the sentence is felicitous and true in this context.
 - (41) Eli ko yé súsú be yè dudzi le awu-dodo fe hovivli me. Eli only FOC think COMP LogP win in dress-wear POSS contest inside.

'Only Eli thinks that he won the costume contest.'

I na ∩

ZAS, HU Berlin, UMiB

イロト イヨト イヨト

New prediction: Strict-unknown identity

(42) a. <u>LF</u>: Only [$Eli_{[F]}$ thinks λw_x [[LOG **pro**_i] $_{w_x}$] won $_{w_x}$]]

スロッス回 スポッスポッスロッ

ZAS, HU Berlin, UMiB

Bassi et al.

Strict Logophors

 Background
 The puzzle of Strict Logophors
 Proposal
 Strict-unknown identity
 Conclusion
 References

 000000000
 00000
 00000
 0000
 00000
 00000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 000000<

New prediction: Strict-unknown identity

(44) a. <u>LF</u>: Only [$\text{Eli}_{[\mathbf{F}]}$ thinks λw_x [[$_{\text{LOGP}}$ [LOG **pro**_{*i*}] $_{w_x}$] won $_{w_x}$]] b. <u>Alt's</u>: { Kofi thinks λw_x [[$_{\text{LOGP}}$ [LOG **pro**_{*i*}] $_{w_x}$] won $_{w_x}$], Koku thinks λw_x [[$_{\text{LOGP}}$ [LOG **pro**_{*i*}] $_{w_x}$] won $_{w_x}$], ...}

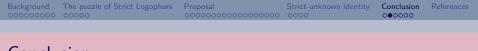
(45) $[pro_i]^g = \lambda w_x$. the man who x knows as wearing the red costume in w

ZAS, HU Berlin, UMiB

・ロト ・回ト ・ヨト ・ヨト

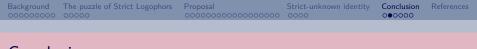
Bassi et al. Strict Logophors = nar

Background	The puzzle of Strict Logophors	Proposal	Strict-unknown identity	Conclusion	References
	00000	000000000000000000000000000000000000000	0000	00000	


Bassi et al.

Strict Logophors

≡ ∽ へ (~


ZAS, HU Berlin, UMiB

・ロ・ ・ 西・ ・ 声・

- We proposed a theory of the semantics of logophoric pronouns in Ewe, Igbo and Yoruba on which their *de se* coreference comes from a presuppositional feature that can optionally be ignored when computing focus and ellipsis
 - Insipred by the properties of *φ*-features, more generally, in these enviroments (Sauerland 2013; Bassi 2021, a.o.)
- Correctly predicts (subtle) strict readings of logophors

ZAS, HU Berlin, UMiB

- We proposed a theory of the semantics of logophoric pronouns in Ewe, Igbo and Yoruba on which their *de se* coreference comes from a presuppositional feature that can optionally be ignored when computing focus and ellipsis
 - Insipred by the properties of *φ*-features, more generally, in these enviroments (Sauerland 2013; Bassi 2021, a.o.)
- Correctly predicts (subtle) strict readings of logophors

Open Question

What does the theory imply for the typology of logophoric-like elements cross-linguistically (shifted Indexicals, PRO)?

ZAS, HU Berlin, UMiB

- Logophoric pronouns famously share some semantic properties of PRO, most notably the obligatory *de se* reading
- It is thus sometimes suggested that LOGP and PRO should receive a uniform analysis at LF
- As opposed to LOGP, however, PRO does not allow strict readings in ellipis and focus (Landau 2013, a.o.).

I na ∩

ZAS, HU Berlin, UMiB

- Suppose that LOGP and PRO indeed have the same basic LF make up—[LOG proj]
- ...But that PRO comes with the added condition that its variable-part must be λ-bound directly by the controller

(46) Mary
$$\lambda x x$$
 wants [to $\underbrace{[\text{LOG } x]}_{PRO}$ win]

3

ZAS, HU Berlin, UMiB

- Suppose that LOGP and PRO indeed have the same basic LF make up—[LOG proi]
- But that PRO comes with the added condition that its variable-part must be λ -bound directly by the controller

(47) Mary
$$\lambda x x$$
 wants [to $\underbrace{[\text{LOG } x]}_{\text{PRO}}$ win]

Then, only sloppy readings will be possible

Bassi et al.	ZAS, HU Berlin, UMiB
Strict Logophors	42

<ロ> <同> <同> < 同> < 三> < 三> < 三)

nan

(48) Mary $\lambda x x$ wants [to $\underbrace{[\text{LOG } x]}_{\text{PRO}}$ win]

Suppose further that this binding configuration is subject to some *locality* conditions (maybe due to a syntactic feature on PRO)

Bassi et al.

Strict Logophors

I na ∩

ZAS, HU Berlin, UMiB

LogP and PRO: speculations

(51) Mary
$$\lambda x x$$
 wants [to $\underbrace{[\text{LOG } x]}_{\text{PRO}}$ win]

- Suppose further that this binding configuration is subject to some *locality* conditions (maybe due to a syntactic feature on PRO)
- Then, it may be possible to further explain why LogP but not PRO allows for long-distance antecedents:
 - (52) Kofi₁ súsú be Koku₂ d₃i be $y \hat{e}_{1/2/*3}$ a de Afi Kofi₁ thinks COMP Koku₂ wants COMP LogP_{1/2/*3} will marry Afi
 - (53) Kofi1 thinks that Koku2 wants to PRO*1/2 marry Afi

イロト 不得 トイヨト イヨト

I na ∩

LogP and PRO: speculations

(54) Mary
$$\lambda x x$$
 wants [to $\underbrace{[\text{LOG } x]}_{\text{PRO}}$ win]

- Suppose further that this binding configuration is subject to some locality conditions (maybe due to a syntactic feature on PRO)
- Then, it may be possible to further explain why LogP but not PRO allows for long-distance antecedents:
 - (55)Kofi₁ súsú be Koku₂ d₃i be $y \hat{e}_{1/2/*3}$ a de Afi Kofi1 thinks COMP Koku2 wants COMP LogP1/2/*3 will marry Afi
 - (56) Kofi₁ thinks that Koku₂ wants to **PRO**_{*1/2} marry Afi
- …and maybe also why PRO but not LogP can only appear in subject positions

イロト 不同 トイヨト イヨト

≡ nar

43

Acknowledgements

We thank our speakers: Noble Ahiaklo-Kuz, Mary Amaechi, Daniel Aremu, Veronica Ebere Ugwu, Johnson Folorunșo Ilori, Anastasia Nuworsu and Gerald Okey Nweya.

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 856421).

ZAS, HU Berlin, UMiB

Image: A math a math

Bassi et al.

Strict Logophors

References I

- Bassi, I. (2021). *Fake Feature and Valuation From Context*. PhD thesis, Massachusetts Institute of Technology.
- Bimpeh, A. A., Driemel, I., Bassi, I., and Silleresi, S. (2022). Obligatory de se logophors in Ewe, Yoruba and Igbo: Variation and competition. To appear in Proceedings of WCCFL 40, https://osf.io/p8gsv/.
- Bimpeh, A. A. and Sode, F. (2021). Evidence against de se binding: Strict readings of the logophoric pronoun in Ewe. In *Proceedings of TripleA*, volume 6. MIT Working Papers in Linguistics.
- Bruening, B. (2019). Generalizing the presuppositional approach to the binding conditions. Unpublished Ms. Draft: https://udel.edu/ bruening/Downloads/BindingPresupp5.pdf.
- Clements, G. (1975). The Logophoric Pronoun in Ewe: Its Role in Discourse. Journal of West African Languages, 10:141–177.

3

ZAS, HU Berlin, UMiB

References II

- Cooper, R. (1979). The interpretation of pronouns. In Heny, F. and Schnelle, H., editors, *Selections from the Third Groningen Round Table, Syntax and Semantics*,, volume 10, pages 61–92. Academic Press, New York.
- Heim, I. (1992). Presupposition projection and the semantics of attitude verbs. *Journal of Semantics*, 9:183–221.
- Hyman, L. M. and Comrie, B. (1981). Logophoric reference in Gokana. *Journal* of African languages and linguistics, 3(1):19–37.
- Landau, I. (2013). *Control in Generative Grammar*. Cambridge University Press, Cambridge.
- Lewis, D. (1979). Attitudes de dicto and de se. *The philosophical review*, 88(4):513–543.
- Manfredi, V. (1987). Antilogophoricity as Domain Extension in Igbo and Yoruba. *Niger-Congo Syntax and Semantics*, 1:97–117.
- McKillen, A. (2016). On the interpretation of reflexive pronouns. PhD thesis, McGill University.

ZAS, HU Berlin, UMiB

References III

- Pearson, H. A. (2015). The interpretation of the logophoric pronoun in Ewe. *Natural Language Semantics*, 23(2):77–118.
- Percus, O. and Sauerland, U. (2003). Pronoun Movement in Dream Reports. In Kadowaki, M. and Kawahara, S., editors, *Proceedings of NELS 33*, pages 347–366. GLSA, University of Massachusetts, Amherst.
- Ross, J. (1967). *Constraints on Variables in Syntax*. PhD thesis, Massachusetts Institute of Technology.
- Sauerland, U. (2013). Presuppositions and the alternative tier. In *Semantics* and *Linguistic Theory*, volume 23, pages 156–173.
- Sauerland, U. (2018). Counterparts block some 'de re' readings. English Linguistics: journal of the English Linguistic Society of Japan, 35(1):38–64.
- von Stechow, A. (2003). Feature Deletion under Semantic Binding: Tense, Person, and Mood under Verbal Quantifiers. In Kadowaki, M. and Kawahara, S., editors, *Proceedings of NELS 33*, page 133–157. GLSA, University of Massachusetts, Amherst.

3

ZAS, HU Berlin, UMiB